RerrslLCD

Dinosaur

BersolLCD

Contents
ADOUL DINOSAUE ...ttt ettt e b e bt sh e st et et e e bt e s bt e sbeesaeeeateeabe e bt e sbeesaeesasesmneeabeenbeenes 4
ST Y T Y= L o 1V o TSP 5
100 o (ol IO PP U ST PPTOPPRTI 6
T o o IO PP PO USTOPRTOPPOTI 7
oA [T =d T T o PR 8
(0o Te [1aY -8 YT G- =TSP 9
Y A TR o o TSI Yol == o DRI 9
DIFAW @ PIXEl ettt ettt ettt e st e st e s b e e a e e s be e e a bt e st et e hte e e be e e sabeeeabeeeneee s reeennnes 11
IMIOVE @ PIXEL .ttt ettt ettt e st e st e e s ab e e s be e e abeesabeeebteesabeeesabeesabeesbeeesabeeenanes 14
DIaW IMOTE PIXEIS ..ottt ettt et sttt e st e e ab e e st e e s bbeesabeeesabeesabeesabeeesabeeennnes 14
Move piXels Dased ON USEI INPULccicciiiii ettt ettt e e e et e e e e ctte e e e sbteeeeebteeeesassaeesesranesannes 17
Recognize and react to collisions DetWEEN PIXEIS.........uviiieciiiii it 19
BT a0 XY= 10 AT Lo TR TP PP OT PP OPI 22
CaCHICONTIOIEI.N ettt sttt e st e e bt e e s abeesbeeesabeesbeeesnbeesabaeesareenn 29
(0 Tora [@oT 14 o] 11T ol o] o PSP PPPPRPRNt 30
DINOCONTIOIEI.I .ttt et et e s bt e e s bt e e s be e e abeesabeesabeeesabeesbeeesbeesabeeenanes 31
(BT o o]l a1 u o] =] ool TS SP 34
WEEACONTIOIEI N L.ttt sttt et e e bt e sat e sat e st e et e e beesbeesbeesaeeeanean 37
LV TTe (0o T o A o] 1T ol o] o FON RSP 38
Bill OF IMAtEITAIS «..coveeeiee ettt r e s sttt e b e b e e s e e sanesneeneenes 40
1602 LCD 16x2 Character Display w/ 12C Controller - $2.00 — 1 R0 ..vcvveeereeieereesiesieieeeeeeesesseseenas 40
Arduino Nano ClonNe = S1.90 — 1 R ..cccuieerieetieitee et eee et et eeteeeteeeteeereeeteesteesseesaeesnseenbeenseessessreseneseneees 41
74HX4051N DIP-16 Multiplexer - $2.04 / 10, $50.204 €aCh — 1 REQ.veeevieveeereecreeeeeeceeeeeeere et evee e 42
Ceramic Capacitor - $1.40 / 300, SO.0047 €8Ch — 1 REQ. ..ccveeevieerieereeieeceeeeteeeteeeteeeteeeeeeeeesveeeteesreesaee e 43
Resistor - $2.48 / 600, S0.0041 €8CH — 1 REQ. «vecveerverrieiereireerecteeteeresteeeesteereenseeteesestesrsensesteessereeseenns 44
Tactile Push Button Switch 12x12x4.3mm — $1.79 / 50, $0.0358 each —4 Req......ccceevvervevverrrevenreerenn. 45
Pin Header Connector Male 2.54mm Pitch Single Row 40 Pin - $1.85 / 30 x 40, $0.0015 each — 16 Req.
.. 46
Female — Female Jumper Wire 20cm 2.54mm 1p-1p — $0.78 / 40, $0.0195 each — 14 Req.................. 47
12C / Power Hub - $2.00 / 10 - $S0.20 €8Ch — 1 RE0. .cvieueerviireereiricteereeteeeeereereereereeeesreereensesteersenseeneenns 48

Controller - $2.00 / 10 - $0.20 €2CHh — 1 REQ. cueevervieereriireeeieteeeecteeteeereeteereeseesesseeteensesteessensesasensesseenses 49

BersolLCD

Jumbo Wood Craft Sticks - $5.30 / 200 — $0.0265 €aCh — 5 RE(. ..veeevervreeeericrecricreeeecte e sre e eveens 50

SUIMIMIAIY it e s e e e s eseaeeasaasaesasasssasasssssssssssssssssessssssssssseseesssessesssssseseeseesnennannns 51

RerrslLCD

About Dinosaur

To start playing Dinosaur in the Chrome Web Browser put
chrome://dino

In the URL bar

< C & Chrome | chrome://dino

Initially you will see

w

No internet

Try:
* (Checking the network cables, modem, and router
» Reconnecting to Wi-Fi

ERR_INTERMET_DISCONMECTED

Press the up arrow to start playing

-

Press the up arrow to jump and avoid the cacti

BersolLCD

When you hit a cactus, you see

HI 00077 00077
G AME OVER

Breaking It Down

The first thing we want to consider is what the controls are. In this version of the game, there is only
one button: up. You can jump. That's it.

You may have noticed already that the controller for the Arduino version uses 4 buttons. We could have
gotten away with one, but rather than simply make an exact copy of the game, it will be enhanced a bit.

Embrace, Extend, Extinguish

In other words, apply your own creativity to a base idea so that at some point, your version is
completely unrecognizable from the source material.

Now that we know what the controls are, we look at the graphics. It’s probably best to think of the
graphics in terms of the hero and the enemies.

Our hero is the dinosaur. He’s the character the user controls.

Our enemies are the cacti. They are to be avoided. There are two types: big and small.
Now, we need to consider how they move.

Our hero jumps.

Our cacti run.

When breaking things down it’s important to look at patterns. We can think of the game in terms of the
hero moving or in terms of the cacti moving. And in this case, it’s easier to think of it in terms of the
cacti running towards the dinosaur.

You could imagine that they are cars and we have some crazy person leaping over them rather than get
hit by them as they pass.

RerrslLCD

Next, we think about how the player scores points. Some games have an ending. This game does not.
You simply get one point for each cactus you jump over.

There are no hit points. As soon as you hit a cactus, the game is over.

Embrace
Step 1 is to embrace the game as it is presented.

We’'ll need a controller with at least 1 button.
We'll need to design graphics for a dinosaur and two cacti.

Use paper to draw out your version of a dinosaur, a large cactus and a small cactus.

It doesn’t need to be fancy. The thing to keep in mind is the limitations of the graphics display we’ll be
using. We’'ll be using a 16x2 character display which limits us to 5x8 pixels for each sprite. However, we
can combine sprites to make bigger sprites. The other limitation to consider is that we can only have 7
custom sprites loaded into the display at a time. We can swap them out, but only 7 at a time.

RerrslLCD

The way I've designed my sprites is that the cacti use one sprite each, the tumbleweed has 4 frames of
animation and the hero takes up 4 sprites at once and has 4 animation frames.

That gives us 2 cacti sprites, 1 tumble weed sprite and 4 hero sprites that will be loaded onto the display
at any given time which maxes out the available 7.

Extend

You probably noticed that there is no tumbleweed in the original game. This is the first extension.
Rather than only having the hero jump over enemies, there is a new enemy: the tumbleweed which the
hero must dodge by either jumping over it while it’s on the ground, or duck under it while it’s in the air.

The tumbleweed bounces as it approaches the player using a simple SIN function

Since our hero can jump, we need a jump animation frame. As our screen space is limited, the hero
goes into a crouch position on the first or second line only of the display depending on whether he’s
jumping or ducking.

When our hero is hit, we don’t need to change the body, so we just have two additional sprites that
make up his head when he throws his head back in pain from getting hit.

Being able to duck is the second extension.

BersolLCD

And finally, rather than have a game over from getting hit, the score will just decrease until it reaches

zero. If players want to compete, they can simply set a time limit and see who can get the highest score
in a fixed amount of time.

Extinguish

How would you change the controls, graphics, scoring and “plot” of the game while still being limited to
7 different sprites on the screen at a time and a 16x2 display?

BersolLCD

Coding the Game
When it comes to coding any game there is a good set of steps to help you break down the problem so
you can tackle pieces at a time in a logical progression.

Set Up the Screen

Draw a pixel

Move a pixel

Draw more pixels

Move pixels based on user input

Recognize and react to collisions between pixels

Nou ks wnNeE

Implement scoring rules

Set Up the Screen
Dinosaur makes use of the LiquidCrystal_I2C library which allows us to talk to the character display over
12C which requires far fewer wires than trying to talk directly to its data lines.

2 #include "LiguidCrystal I2C.h"

This library is included with the downloadable source code to avoid issues with updates or variations of
the library that don’t work with the rest of the code.

Next, we configure the library for the specific display we are using.

5 | https://forum.arduinc.cc/index.php?topic=117045.0
9 |f/ Set the LCD address to 0x27 for a 1€ chars and 2 line display
10 LiguidCrystal I3C led(Ox3F, 16, 2);

Namely, the address and resolution. We are using a 16x2 character display and it is configured to be at
address 0x3F. Notice that the comment says 0x27. This is because 0x27 is often the address specified in
sample code as it is often the address set. But not always.

The location of the character display is set by the factory. There are three pairs of connectors on the
board that can be connected giving 7 additional address lines that can be selected.

RerrslLCD

Note the three sets of connectors above the blue square on the left. They can be soldered together to
change the address of the controller.

https://retrolcd.com/Help/12CFinder

Use this tool to figure out what the memory location of your display is. Make sure your display is
properly connected to the Arduino before running it. It cycles through all the possible addresses and
indicates which ones have a device connected. Don’t connect more than one unknown device at a time
or you won’t know which address is for which device. Fortunately, for this project, we only need one.

35 S/ initialize the LCD
40 led.begin():

41 led.clzar() s

42 led.backlight{);

43 led.setCursor {0, 0):

AA

There are three commands really needed in the Setup function:

1. Begin
2. Clear
3. Backlight

Begin tells the controller to start listening. Clear, clears out the display so it is empty of any characters.
And Backlight turns on the backlight. The blue square on the controller is what adjusts the brightness /
contrast of the display.

https://retrolcd.com/Help/I2CFinder

BersolLCD

108 led.print{line);
The print function works just like Serial.print and prints out whatever is contained in the string.

Draw a Pixel
When it comes to character displays, we don’t really have pixels. It’s generally not recommended to try
to force something to do something it wasn’t designed to do.

Since we are working with a character display, the first task is to put a character on the display in a user-
defined location.

This shows that you have control of the display.

If you can put the letter “A” on the character display at a specific location, you have complete control
over it.

Whenever you are working with graphics it is important to have a double buffer. The first buffer is
visible to the user. This is the character display. The second buffer is where we build up what will be
shown on the first buffer. The character display does not provide a second buffer and so we must
implement our own.

12 char Screen[32]:
13 int screen x = l&;
14 int screen v = 27

Since we are working with printed text, the buffer needs to be an array of char data types. Notice that
the screen array size is equal to screen_x * screen_y. We could have defined Screen as [2][16] but it is
easier to just use a single dimension array.

Rather than draw directly to the LCD Display, we will now write a few functions to draw to our second
buffer so that the user isn’t subjected to visual artifacts like flickering as we clear the screen and redraw
it.

52 wold ClearScreen() |

g3 for {int j = 0; j < 32; j++) |

a4 Screen[j] = H

The first thing we need is a way to clear out the buffer so it’s ready for the next frame. There are two
things to notice here: the first is that we are not referencing screen_x or screen_y, we are just using the
fixed value of 32. This saves us a calculation as we’re not writing a generic library anyway. If you
wanted these functions to be compatible with a variety of displays, it would be necessary to use the
variables rather than a fixed value.

RerrslLCD

The second thing to notice is that we’re not writing zero to each of the array elements. Instead we are
using the space character. This is because zero means it is the end of the string. Remember, we are
using a character display and will be writing strings to it, so we must follow the rules of strings. And the
most fundamental rule of strings is that they must end in a null (aka zero) value.

The next function we need is the PlotCHAR function which will place characters into our buffer at a
specified location.

g7 vold PlotCHRABR({int x, int v, char c) |
if (x + ¥ * screen_x >»>= 32) [

BE return;

70]

71 if {z < 0) |
72 return;y

73 1

74 if [y < 0) {
75 return;

76}
77 if (x > 15) |

78 return;

74 }

g0 if (¥ = 1) |

al return;

g2 }

23 Screen[x + ¥ * screen x] = c;
g4 1

The first check is there to demonstrate how to ensure that we are not writing outside the bounds of the
buffer. However, it does not check that the given x and y values are valid for our physical display. For
example, if we passed iny = 0 and x = 24, that would not extend past the boundary of the buffer, but our
display is only 16 characters wide so the character would end up on the 2™ line which is not the
expected behavior.

The four conditions after the first ensure that the given x and y values are within the bounds of the
physical display. If they aren’t, the function returns and does not put the given CHAR in the buffer.

If x and y fit in our array and they are within the physical bounds of the display, they we use the simple

math function to store the character in the buffer.

BersolLCD

When designing these systems, it is best to draw things out. Especially when they’re small. Once you
know the rule, it scales to any size. You can see from the picture that the second half of the array
corresponds to the second row of the display. Multiplying y by the width of the physical display gives us
the section of the buffer that corresponds to the physical row.

Notice that we are using the CHAR variable type. Since we are dealing with printed characters, we need
to use a signed variable, or the display will not interpret the characters correctly.

And of course, we need a way to push this virtual screen to the physical screen.
char line[17]:

1010 for (v = 0; ¥ < screen_v; y++) |

101 for (x = 0; ¥ < screen_x; X++) |

102 line[x] = Screen[x + ¥ * screen_x]:
1073 }

104 line[l&s] = 0;

108 led.print {(line) ;

Notice that our line variable has 17 characters. This is because we need to put in a character zero or the
display will not stop trying to read characters after the first 16.
What we are doing here is copying 16 bytes of our buffer at a time and printing them out to the screen.

There is a memcpy function which could replace the x loop, but this is our first game project and we'll
stick to a more basic solution.

By writing whole lines at a time, we avoid the problem of flicker had we just cleared and drawn directly
on the physical display. Using spaces allows us to clear our screen and put out the new display in one
step.

We could reduce this to writing a single line to the display using a carriage return, memcpy and by
increasing the line array. Or even by modifying our main screen buffer and how it calculates where to
put characters in it. | will leave that as a challenge to readers.

Now we know how to define a custom buffer for a display. Write to it. And push it out to the physical
display.

BersolLCD

Move a Pixel

Now that we can plot to our screen, it’s time to learn how to move a pixel. For this step we will think
about our game and how our character moves. In the Chrome version, the dinosaur only moves up
when it jumps. So, we could say, “we just need a y position.” But we’re working with a screen that only
has 2 y positions and we’re introducing a tumbleweed that bounces so our character may need to move
along the x axis in order to position themselves to be able to avoid being hit. It is common in auto-
scrolling games that the player has some freedom of movement in the same axis the game is scrolling.

Jumping is going to be handled a bit differently which we will cover later. So, for our movement we will
stick to moving left and right.

1% int player x;
That gives us a single variable that we need to represent the position of the player.
Then, in our setup function we have

4: player x = 0;

In our loop function we can change player_x and use the PlotCHAR function to see the character we’re
plotting move on the display.

I’'m not going to put the code for this here and will leave it as an exercise for the reader to create
working code that moves a character back and forth on the display.

Draw More Pixels

Before we start drawing more pixels on the screen we need to think about their purpose and how they
will move. We will be having our cacti move towards the player so the player position will not be used
to calculate the position of the cacti. They are all separate entities. And we want to be able to move the
cacti and some controllable speed. There are several ways to do this. One way is to move the cacti only
certain frame numbers and have a fixed frame rate. The other is to use the float variable type so we can
adjust their position in very small increments and then round when rendering their position.

30 float cacti_x:[10];

Again, everything only really moves along the x-axis. This gives us 10 cacti that can be going at once.
When a cactus reaches the left side of the screen it will reset to another random x position.

We only need an array big enough to hold as many cacti as can be displayed on the screen at once.
w171 for (j = 0y j < cacti_count; J++) {

cacti x[j] = random(l7, max x);
cacti_sprite[j] = randomie, 8);

59|]

BersolLCD

In our setup function we can now loop through the array of cacti and set their initial x positions. We will
cover what cacti_sprite is later.

The variable max_x is a defined as a global and is set to 500. That allows our cacti to be up to 500
characters away from the left side of the screen. This is how it change the distance between cacti.
Because the minimum of the random function is 17, they will never immediately appear on the screen.
And by having a maximum of 500, it can give the player a little break before they reach the visible
screen.

In our loop function we now add

260 int j;
26l for (j = 0y j < cacti_count; J++) {

262 FlotCHAR((int)cacti_x[]j], 1, cacti_sprite[j]);

Notice that we cast the cacti_x variable to an int which cuts off the decimal portion. And they are
always rendered at y position 1 which is the bottom row of the screen.

Remember we also added a tumbleweed.

23 float weed x;
24 float weed_w;

The tumbleweed can be in the top row or bottom row, so we need a y value as well as an x value.
In the setup function, we default the x location of the weed to be
54 weed_® = random(200, 1000);

Which puts the weed well off screen, so the player does not encounter it right away.

165 weed ¥ = (int) (sin(total_time * &€.0 /7 3.14) + 1});

To calculate the y position of the weed we use the sin function along with the total time which goes
from 0 to 60 seconds.

In our loop function we now have
240 FlotCHAR({int) weed_x, (int) weed_¥, 5);
Which renders the weed based on the rounded x and y values. We'll cover what the “5” is later.

Our cacti move using a simple bit of math

BersolLCD

16 int jr
168 for (j = 0; j < cacti_count; Jj++) {
1649 cacti x[]j] —= frame_tims * 4.0;

This causes them to move 4 spaces per second.

RerrslLCD

Move pixels based on user input
WEe’ll be using the controller library found here

https://retrolcd.com/KeylnCode

Type it in once, and then you can reuse it as many times as you want.

el

¢ |#include "Controller.h”™

In Controller.h you will find four #define macros

g f/ IS0 Pins used by controcller - 4 Required
T #define CONTROLLEE BUITON FIN A 3
i #defins CONTROLLER BUTTON PIN B 4
9 #define COWNTROLLER BUTTON FIN C 5

11 #defins CONTROLLER_BUITON_FIN READ 7

Make sure you either wire up the controller to the same pins or update Controller.h to match your
wiring.

Then in our loop function we have

231 Controller: :ReadButtons()

And call our Handlelnput function

0 wvoid HandleInput()

111 {

112 if (dinc.dinc_state != DINC_STATE JUMP

113 && dino.dino_state !'= DINO_STATE CROUCH) {

114 if (Controller::IsPressedhgain (CONTROLLEE BUITON A)) {

115 dino.Jump();

116 Controller::MarkUnreleased (CONTROLLER BUTTCON_A);

117 1 =lse |

113 if (Controller::IsPressedigain(CONTROLLER BUTICN B)) |

119 dino.Crouch{) ;

120 Controller: :MarkUnreleased (CONTROLLER BUTTON_B) ;

121 } =lse |

122 if (Controller::IsPressedhgain (CONTROLLER BUITON LEFT)) |
123 if (player_x > 0} {

124 player x—-;

125 1

126 Controller::MarkUnreleased (CONTROLLER BUTTON_LEFT) ;
127 1} else |

128 if (Controller::IsPressedigain (CONTROLLER BUTTCON RIGHT)) {
129 if (player_x < 4) {

130 plaver_x++;

}

Controller: :MarkUnreleased (CONTROLLER BUTTON_RIGHT) 7

133 1

https://retrolcd.com/KeyInCode

BersolLCD

We are using the IsPressedAgain and MarkUnreleased methods so that the user cannot just hold down
the button. They must press and then release the button before it can be pressed again.

There is very simple logic for the controllers. The user and move the hero left or right and they can jump
or crouch.

We’'ll ignore the dino class for now. All we are doing is checking to see if buttons are pressed and
modifying variables depending on which buttons are pressed. Notice that we are using a series of if-else
statements. This prevents the user from pressing more than one button per frame. It is especially
important for the Jump and Crouch routines as they are states and starting both would cause problems.
Once the player is in the Jump or Crouch state they cannot go into another state until those states
complete. The first “if” verifies that the user is not in a jump or crouch state before processing any
input.

BersolLCD

Recognize and react to collisions between pixels
Now that everything is moving around the screen it’s time to figure out when things hit each other. Or
when things go out of bound.

The rules of the game are that when something reaches the left side of the screen without hitting the
player, the player gets points. If something hits the player, the position of it resets and the player loses
points.

The logic which handles objects reaching the left side of the screen is found in the function
HandleSpriteUpdates

1538 wold HandleSpriteUpdates()

1538 |

L&l weed ¥ —= frame_time * 4.0;7
lal if (weed_x < 0) {

162 points += 10;

163 weed x = random (200, 1000);
l1ad }

165 weed_y = (int) (sin(total_time * &.0 /7 3.14) + 1);

18§ int j;

168 for (j = 0y j < cacti_count; J++) |
164 cacti_x[j] -= frame_tims * 4.0;
1710 if {cacti_x[J] < 0} {

171 points++;

172 cacti x[j] = random(l7, max x);
173 cacti sprite[j] = random(g, 8);
174 }

173 }

178]

This is where we move the cacti and the weed left every frame and, also check to see if it has gone off
the left side of the screen. If a cactus goes off the left side of the screen, then the player gets a point. If
the weed goes off the left side of the screen, the player gets 10 points.

In either case, the x location for the enemy resets.
In the case of the cactus, the sprite can also change.

On the Arduino, the minimum value of random is inclusive but the upper bound is exclusive. This means
that although the random function is passed 6 and 8, it can only return 6 or 7.

We'll cover sprites later.

In addition to the boundary detection, we also need to detect whether the cacti or weed have hit the
player. For that we have a dedicated function to help keep the code manageable.

RerrslLCD

172 woild HandleCollision()

179 ||

120 gwitch (dino.dino_state) |

181 case DINO STATE JUME:

182 if (weed vy == 0)

183 {

154 if (weed_x »= player X && weed X <= player x + 2} |
1585 weed x = random (200, 1000);
186 points -= 5;

1587 dinc.Hit():

188 }

189 1

140 break;

151 cases DINO STATE CROUCH:

192 if (weed_y == 1)

153 {

194 if (weed x >= player X =z& weed x <= player x + 2) |
145 weed_® = random(200, 1000);
149& points -= 5;

197 dinoc.Hit():

198 }

199 1

200 break;

201 default:

202 if (weed x >= player X && weed x <= player x + 1} |
203 weed_x = random{200, 1000);
204 points -= 57

205 dino.Hit():

208 1

207 break;

208 }

208

210 if (dino.dinoc_state != DINO STATE JUME) |
211 int j;

212 for (j = 0; J < cacti_count; j++) {
213 if (player_x == (int)jcacti_x[j]) {
214 cacti x[]j] = random(l7, max x);
215 cacti_sprite[j] = random{e, 8);
21é points—-;

217 dinc.Hit{);

218 break;

2148 1

220

221 }

2322 }

223 if {points < 0) |

224 points = 07

235 1

BersolLCD

We start off by checking to see if the player has collided with the weed. The weed can be up in the air
or down on the ground. The player can be standing, jumping or crouching. It may help to create a truth
table to ensure all the possibilities are covered.

Player Is Weed Is Collision
Standing In Air Yes
Standing On Ground Yes
Crouching In Air No
Crouching On Ground Yes
Jumping In Air Yes
Jumping On Ground No

We can see from this truth table that there is a 66% chance that the weed is going to hit the player.

Therefore, we give 10 points to the player for dodging it and only take away 5 points if they get hit. In 6
attempts they will gain 10 points twice and lose 5 points 4 times. Which works out to zero points given
completely random chance. That leaves skill as the deciding factor.

If the dino is in the jump state, then we check to see if the weed is Up. If it’s not, there’s no chance of
collision. If it is, then we check to see if the weed’s x position is within the player sprite. And if so, there
is a collision, points are lost and the weed resets.

If the dino is in the crouch state, then we check to see if the weed is Down. If it’s not, there’s no chance
of collision. If it is, then we check to see if the weed’s x position is within the player sprite. And if so,
there is a collision, points are lost and the weed resets.

If the dino is in the default state, which is standing, then we only need to check to see if the weed’s x
position is within the player’s sprite and if so, points are lost and the weed resets.

When it comes to the cacti, we just check to see if the dino is jumping, and if it’s not, we see if the
cactus is in the same position as the player. Notice that in the case of the cactus, there is only one space
being checked while with the weed, three spaces are being checked when jumping or crouching and two
are being checked when standing. This is because the jump and crouch sprite are 3 characters wide and
the standing sprite is 2 characters wide. For the cactus, we're just making it a little easier for the player
to avoid them. There is a bit of extra time to jump out of the way.

RerrslLCD

Dinosaur.ino

LA = L [

[= 11

10

#include <Wire.h>

#include "LiquidCrystal I2C.h"
$includs "DincController.h™
#includs "WeedController.h™

"o

#include "CactiController.h”™

"

$include "Controller.h”™

SS o httpa:/fforum.arduinc.ce/findex.php?topic=117045.0
S/ Set the LCD address to 0x27 for a 16 chars and 2 line
LiguidCrystal I2C lcd{0x3F, 16, 2};

! |char Screen[32];

int screen_x = 16;
int screen y = 27
int start_timer;
int end_timer;

1| float frame time;

float total time;
int player x;

int max x = 500;
int points = 07

float weed_x;
float weed_w;

DinoController dino;
WeedController weed;
CactiController cacti;

1 flocat cacti_x[10];:

int cacti_sprite[10]:

! int cacti_count = 10;

display

RerrslLCD

34 |woid setup() {
35 Serial.begin{9e00);

37 randomSeed {analogBead (0))

39 S/ initialize the LCD
40 led.begin():

41 led.cl=ar():

42 led.backlight () ;

43 led.zecCursor {0, O0)7

45 dino.Init():
48 weed. Init():
47 Cnntruller::Init{Jﬂ
playsr_x = 07

50 led.createfhar({é, cacti.framel);
ol led.createChar (7, cacti.framel);

53 total _time = 07

54 weed x = random({200, 1000});

55 int j;

Seo for (j = 07 J < cacti_count; Jj++)

57 cacti_x[j] = random{l7, max x);
58 cacti_sprite[]j] = random{&, &);
59 }

€0 |1

o2 wvold ClearScreen() |
for (int j = 0; J < 32; j++) {
Screen([j] = ' ':

r'\.r'\.,r\,
T S
—

[a]
(&}
fa—

RerrslLCD

2 wvoid PlotCHAR{int x, int ¥, char e} |
g9 if (x + ¥ * screen_x >= 32) [

70 return;y

71 }

72 if (x < 0) |
73 return;

74 1

75 if [y < 0) |
76 return;

77 1

78 if {x = 15) |
75 return;

1] 1

81 if (v = 1) |
g2 returny

a3 }

24 Screen[x + ¥y * screen_x] = cj
251

=]

void BenderScreeni() |

38 int x, ¥r

259 char line[17]:

a0 byte point _char[l&];
91

92 String point_disp = "Ft3:™ + 3tring(points);
93 point disp.getBytes (point_char, 1&);

G4
95 for {x = 0; x < l&; x++) {
96 FlotCHAR(x + &, 0, (char)point char[x]);
a7 }
95 led.setCursor {0, 0):
100
101 for (y = 0y ¥ < screen_y; y++) |
102 for (x = 07 X < screen_X; X++) {
1403 line[x] = Screen[x + ¥ * screen_x];
104 1
1035 lin=[lg] = 07
108 led. setCursor{0, ¥);
107 led.print{line) ;
108 }

109 '}

RerrslLCD

111 woid HandleInpuat()

112 |
113 if (dino.dino_state != DINO STATE JUMF
114 &t dino.dino state != DINO STATE CROUCH) |
115 if (Controller::IsPressedigain (CONTROLLER BUTTON &)) (
11l& dino.Jump () ;
117 Controller::MarklUnreleased (CONTROLLER_BUTTON &)
115 } =lse |
115 if (Controller::IsPressedigain (CONTROLLER BUTITON B)) {
120 dinoc.Crouch();
121 Controller: :MarkUnreleased (CONTROLLER BUTTON _B)
122 } else |
23 if (Controller::IsPressedfgain (CONTROLLER BUTTON LEFT)) |
124 if (player_x > 0} {
125 player x--;
12& }
127 Controller: :MarkUnreleased (CONTROLLER BUITON LEFT)
128 } glse |
125 if (Controller::IsPressedigain (CONTROLLERE BUTTON EIGHT)) {
130 if (player_x < 4) {
131 player x++;
132 1
133 Controller: :MarkUnreleased (CONTROLLER_BUTTON _RIGHT) ;
134 }
135 }
136 }
137 }
138 }
1391

141 woid HandleSpriteChange ()

142 |

143 if (weed.weed sprite_change) [

144 led.createChar {5, weed.frame)

145 weed.weed_sprite_change = false;

l4¢ }

147

148 if (dino.dino_sprite_change) |

145 S/ HOTE: do not use createlChar(d, ...), it confuses the Ardinoc
150 S/ http: //forum. arduine. co/index. php?topic=T4666.0
151 led.createChar{l, dino.dinoTL);

152 led.createChar {2, dino.dinoTIR);

153 led.createfhar {3, dino.dinoBL);

154 led.createfhar{4, dino.dinoBR);

155 dino.dino sprite change = Ialses;

15¢ }

RerrslLCD

Tl

[% I

{

2% wvold HandleSpriteUpdates()

L

weed ¥ —= frame_tims * 4.0;7
if (weed x < 0) {

points 4= 10;

weed x = random{200, 1000);
}

weed v

int j;
for (j = 0y j < cacti_count; J++) {
cacti x[j] -= frame_tims * 4.0;
if (cacti_x[j] < O) [
pointat++;
cacti_x[]] = random{l7, max x);
cacti_sprite[j] = random(&, &);

{int) (sin({total time * 6.0 / 3.14) + 1)

RerrslLCD

17% woid Handlelollision()
180 |
181 gwitch ({dino.dino state) |

a2 case DINO STATE JUME:
183 if (weed_y == 0)
184 {
1285 if (weed_x »= plaver_X && weed X <= player_x + 2} {
186 weed x = random {200, 1000);
1587 points —= 5;
138 dinc.Hit():
1849 1
150 }
181 break;
192 case DINO STATE CROUCH:
153 if (weed_y == 1)
154 {
1485 if (weed_x »= player X && weed X <= player x + 2} |
19¢ weed x = random{200, 1000);
187 points -= 5;
148 dino.Hit():
199 1
200 }
201 break;
202 default:
203 if (weed_x »>= player x && weed x <= player x + 1} {
204 weed x = random({200, 1000);
205 points -= 5;
206 dino.Hit():
207 }
208 break;
209 }
210
211 if (dino.dino state != DINO_STATE JUMP) {
212 int jr
213 for (j = 0; J < cacti_count; j++) {
214 if (player_x == (intjcacti_x[j]) {
215 cacti x[j] = random(l7, max x);
216 cacti_sprite[j] = random({&, &);
217 pointa—-;
218 dinc.Hit({):
21% break;
220 }
221
222 }
223 }
224 if {points < 0) |
225 points = 0;
226 }

Ao }

RerrslLCD

.
']

[
r

.

I

.

I

[

%]

%]

[

%]

S % I

L

[S ST O T % N % T T O O Y T % T % B i D o T % T O % N % T T T % N % TR % T % O % Y T T % T i O o T % D % % T O T % T o I

L3 L L L L L

L

L L

[N]

L B O I

e e e e e - - - - -
[%] =1

=1
o

[%) [}

LA I =

[= 11

==

%] (TSR]

LA I =

] =1 &

LA S

e T

]

L4 S

[= 1

(X e}

LA I =

void loop() |
start_timer = millis({);

Controller: :ReadButtons ()

HandleInput():
HandleSpriteChange () ;
HandleSpritelUpdates():
HandleCollision():

ClearScreen();
FlotCHAR({int) weed_x, (int) weed_¥, 5):
switch (dino.dino state) {
case DINQ STATE JUME:
PlotCHRER (player x + 0, 0, 1);
PlotCHRER (player x + 1, 0, 2);
FlotCHAR (player x + 2, 0, 3);
break;
cass DINO STATE CROUCH:
FlotCHAR (player x + 0, 1, 1
FlotCHAR (player x + 1, 1, 2)
FlotCHAR (player x + 2, 1, 3

breakr
default:

FlotCHAR (player x + 0, 0, 1);
PlotCHER (player_x + 1, 0, 2});
PlotCHER (player_ x + 0, 1, 3);
PlotCHER (player x + 1, 1, 4);
break;

}

int jr

for (J = 0; j < cacti_count; j++) {

FlotCHAR({({int)cacti_x[j], 1, cacti_sprite[j]l);

BenderScreen():

end timer = millis({);

frame time = (float) (end_timer - start_timer) / 1000.0;

dinc.Update (frame_time);
weed.Update (frame_time);

total time += frame time;
total time = ((total_time S €0.0) - (int)

(total_time / &0.

oyl

k

e0.0;

RerrslLCD

CactiController.h

#ifndef CactiController h
#define CactiController h

B

s Ll

#include "Arduinc.h”™
#include "LiquidCryatal I2C.h"

(=]

-]

class CactiController |

8 puklic:

g static byte framel[B] = |
10 000100,
11 000100,
12 0pl0101,
13 0pl0111,
14 0kl1100,
15 000100,
lg 000100,
17 000100

g }:

14

20 static byte framed[8] = {
21 Op000oa,
22 000000,
23 000100,
24 0kR10101,
25 0kl11111,
26 000100,
27 000100,
28 0B00100
29 1:

300}:

31

RerrslLCD

CactiController.cpp

1l #include "Arduinc.h”

[

el

#include "CactiController.h”™

4 f/ needs to be define heres with the actual walues in the h file
5 static byte CactiController::framel [E]:
g |atatic byte CactiController::framed [8]:

RerrslLCD

DinoController.h

1 #ifndef DinoController_h
2 #define DinoController_h

Lo

#define DINQ STATE WALK] TRRNSITION 1
#define DINO STATE WALEL 2

wn

(=1

T #define DINQ STATE WALKZ TRRNSITION 3
#define DINO STATE WALEZ 4

[T

10 #define DINO STATE JUMF 5
11 #define DINO STATE CROUCH &

13 #include "Arduinc.h”™
14 |#include "LiquidCrystal I2C.h"

le class DinolController |

17 private:
18 static byte dinoHitL[8] = |
19 0k00000,
20 0k00000,
21 O0k0O0L11,
22 O0k0O0111,
23 O0k0O0111,
24 0k0O0101,
25 O0k0O0111,
26 0k0O0011
27 I
29 static byte dinoHitR[B] = [
30 0k0O0000,
31 0k00000,
32 0k01000,
33 0k01000,
34 0k01000,
35 0k01000,
36 O0k11000,
37 0k10000
38 }:
40 static byte dinoTLl[8] = {
41 0k00000,
42 0k00000,
43 0k00000,
44 0k0O0000,
435 0k0O0000,
46 0k0O0000,
47 0k0O0001,
g 0k0O0011

RerrslLCD

51 static byte dinoIR1[E] = {
52 000000,
53 0w00000,
54 0w00000,
55 0k11111,
56 0k10111,
57 0k11111,
58 0m10000,
59 011111
€0 b
gl
62 static byte dinoBL1[8] = {
63 0=00011,
64 0L10011,
65 0k11011,
66 0k11111,
&7 0k11111,
58 0m01110,
E 0k00110,
70 k00000
71 1:
T3 static byte dinoBR1[E] = {
74 0kl10000,
75 0kll100,
3 0kl0100,
7 0k:10000,
78 0m11000,
79 0kll000,
20 0kl1000,
a2l 000000
82 1
54 static byte dinoBL2[8] = {
25 0k10011,
1 0k11011,
27 0k11011,
3 0k11111,
g 0L01111,
90 0k00111,
91 0e00011,
42 000000
93 1:
94
45 static byte dinoBR2[8] = {
96 010000,
a7 0k11000,
98 0kl10100,
99 0kl0100,
100 0k10000,
101 010000,
102 0k:10000,
103 0k00000
104 1:
105
1ds static byte JumpCrouchl[28] = {
0m00000,
0w00000,
0:00011,
0L00111,
0e01111,
0k11111,
0L00011,
0:00011

RerrslLCD

117
113
11%
120
121
122
123
124
125
128
127
123
125
130
131
132
133
134
135
138
137
138
133
140
141
l4z2
143
144
145
14
147
143
145
150
151
152

153

static byte JumpCrouch2[8]
0000,
0k0000a0,
0k11000,
0k11110,
0pl1111,
0pl1111,
010100,
0p10110

atatic byte Jumplrouch3[g]
Ok00oon,
0B00oan,
0k0000a,
0pll1111,
0k10111,
0pl1111,
0k11000,
0kl11111

float dino_state_time;
float dino_hit timer;

float dino_state duration;

void NextState():
void SetWalkl():
vioid SetWalk2():
void SetJumpCrouch():

public:

byte dinoTL[E&]:

byte dinoTR[EZ];

bkyte dinoBL[E]:

byte dinoBR[EZ];

kool dino _sprite_change;
int dino_state;

bool dino_is_hit:

volid Init{):

void Update (float 3):
void Jump():

void Crouch();

void Hitc():

RerrslLCD

DinoController.cpp

1l #include "Arduinc.h”
2 $#include "DincController.h™

W= L

/¢ needs to be define here with the actual value in the h file
static byvte DinoController::dinoHitL[8]:
static byte DinocController::dincHitR[E8];

]

=1

static byte DinocController::dinoTLl[E8];
static byte DinocController::dinoTR1[8];
10 static byte DinocController::dinoBL1[8];
11 static byte DinoController::dinoBR1[8];
12 static byte DinoController::dinoBL2[8];
13 static byte DinoController::dinoBR2[8];

wroCo

15 static byte DinoController::JumpCrouchl [8]:
1¢ |static byte DinoController::JumpCrouch2[8];
17 static byte DinoController::JumpCrouch3[8]:

1% woid DincController::Init{} |

20 dino_state = DINO STATE WALK1l TRANSITICN:
21 dino state_time = 07

22| dino_state duration = 0;

23 dino_is _hit = false;
24 SetWalkl():
2511

27 woid DincController::Hit({) {
if (dinc_is hit) {
return;
30 }
3l dino_state = DINO STATE WALK1l TRANSITICH:
32 dino_state_time = 07
33 dino_state_duration = 07
34 dino_hit timer = 1.0;
35| dino_is_hit = trus;
36 SetWalkl()r
371
2 woid DinoController::Update (flcat 3} |
3% dino_state time += 37

40 if (dinoc_astate_time »= dinoc state duration) {
41 HextState():

42 }

43 1f (dimo_is _hit) |

44 dino_hit timer -= 3;

45 if (dinc hit timer <= 0} |

48 dine_hit_timer = 07

47 dino _is hit = false;

RerrslLCD

void DincoController::SetWalkl({) |

[T T B IR B 1 A |

(= " = 1]

[ST

[0 T S LT i]

1 o

]

int j;

{1 =20:73
{dino_is

dinocTL[]]

dincTR[]]

} elase |
dinoTL[]]
dinocTR[]]

Ll

if

}

dinoBL[j] =

dinoBR[j] =
}

< 8y j++) |
hit) {
dincHitL[j];

dincHitR[j]:

dinoTL1[3j]:
dineTR1[3];

dinoBL1[§];
dincBR1[§];

dino_sprite_change = trus;

2 woid DincController::SetWalk2({) |

int j;
for {3 = 057]
{dino_is
dinocTL[]]
dincTR[]]

} elase |

dinoTL[]]
dinocTR[]]

if

}

dinoBL[j]

dinoBR[j]
}

dino_sprite_change =

< 8y j++) |
hit) {
= dincHitL[j];

= dincHitR[j]:

= dinoTL1[j]:
= dinoTR1[j];

dinoBL2[§];
dinoBR2[§];

vold DinoController::SetJumpCrouch ()
if (dimo_is_hit) {

return;

}

int j;

(1 =20;
dinoTL[j]
dinoTR[7]
dinoBL[7]

}

=

dino_sprite_change =

< By j++) |

JumpCrouchl [] »
JumpCrouch2 [j] 7
JumpCrouch3 [j] 7

truey

{

RerrslLCD

47 wolid Dinolontroller::Jump() |
if (dino_is hit) {

return;
100 }
101 SetJumpCrouch() ;7
1oz dinoc state = DIND STATE JUME;
103 dino_state_duration = 1.25;

wold DinoController::Crouch() {
107 if (dino_is hit) {
return;

0o

105 }

110 SetJumpCrouch() 7

111 dino_state = DINO STATE CROUCH:
112 dino_state duration = 1.25;

115 woid DinoController: :NextState() |
118 gwitch (dino_state) {

117 case DINO STATE WALKL TRANSITION:
118 SetWalkl{):
1148 dino_state = DINO STATE WALEL:
120 dino_state_duration = 0.250;
121 break;
122 case DINQ STATE WALKL:
123 dino_state = DIND STATE WALKZ2 TRANSITION:
124 dino_state_duration = 0;
break;
126 case DINO STATE WALEZ TRANSITION:
127 SetWalk2 ()
128 dinc_state = DINO STATE WALEZ:
125 dino_state_duration = 0.250;
130 break;
131 cagse DINO STATE WALKZ:
132 dino_state = DIND STATE WALK] TRAENSITION:
133 dino_state_duration = 0;
134 break;
135 case DINO STATE CROUCH:
13g cass DINO STATE JUME:
137 dinc_state = DIND STATE WALK] TRAENSITICON;
138 dino_state _duration = 0;
139 break;

143 dino_state time = 07

RerrslLCD

WeedController.h

#ifndef WeedController h
#define WeedController_h

%)

#define WEED STATE WALK] TRANSITION 1
#define WEED STATE WALKL 2

[

#define WEED_STATE WALE2Z TRANSTITION 3
#define WEED STATE WALEZ 4

w oo

10 #define WEED_STATE WALKS_TRRNSITION 5
11 #define WEED STATE_WALK3 &

#define WEED STATE_WALK4 TRANSITION 7
#define WEED STATE_WALK4 &

[T

#include "Arduino.h”
#include "LigquidCrystal I2C.h"

[P —

class WeedController {
private:
static byte framel[8] = [

Ok0oooa,
3 0k00000,
0pO0110,
k01101,
Obl011l,
0b11011,
0pO0l110,
0p0ll00

3B B B
[E=ar=1

static byte frame2[38] = {
0pO00000,
0200000,
0Bp00000,
000000,
0pl0l10,
011101,
0p11011,
0B00110

static byte frame3[8] = {
000000,
0pO00000,
0200000,
0p01010,
0k11100,
0pbl0111,
0R01111,
0200110
1:

static byte frame4[3] = {
0R00000,
0k00000,
011100,
0kl0110,
0p01111,
0b11011,
0pO0l110,
0200000

oo
-

int weed state;
float weed_state_time;
float weed_state_duration;

T0 viold NextState();
L void SetFrame(int num);

73 public:
75 byte frame[8];
76 bool weed_sprite_change;

void Init{};
vold Update (float s)5

RerrslLCD

WeedController.cpp

1l #include "Arduino.h™

2 |#include "WeedController.h™
4/ needs to be define here with the actual wvalue in the h file
5 static byte WeedController::framel[8]:
¢ atatic byte WeedController::framel2[8]:
7 atatic byte WeedController::frame3[8]:
static byte WeedController::framed([E8];

[T

10 vwoid WeedController::Init() |

11 weed state = WEED STATE WALK]1 TRANSITION;
12 weed_state_time = 07

13 weed_state_duration = 0;

14 SetFrame (0) ;

15}

18

17 woid WeedController::Update(flcat s8) |
13 weed _state_time += 3;

15 if (weed_state_time »>= weed state duration) {
20 HextState():

21 1

221

24 |void WeedController::SetFrame{int num) |
25 int j»r

26 awitch (mam) {

27 case 0:

25 for {(J =0; 3 < &8; j++) {

29 frame[j] = framel([j]:

30 }

3l break;

32 case l:

33 for {(J =0; 3 < &8; j++) {

34 frame[j] = frame2([j];

35 1

36 break;

37 case 2:

38 for (3 =07 3 < 8 3++) |

35 frame[]] = frame3[]];

40

41 break;

42 case 3:

13 for (3 =0 3 < 8 j++) |

44 frame[]] = framed([]];

45 1

4a break;

47 1

8 weed_sprite_change = trus;

RerrslLCD

LTI % R
i

1 ™ [1=9

[T = I = O e Y VI Y I N Y N O Y Y o 5 I o B (O
1 ™ A = L B = O 00 [4;]

[}

vold WeedController::MNextState() |

switch (weed_state) {

case WEED _STATE WALEL TRAENSITION:
SetFrame (0) ;
weed state = WEED _STATE WALEL;
weed state duration = 0.250;
break:

casz WEED _STATE WALEIL:
weed_state = WEED STATE WALK2 TRANSITION:
weed state_duration = 07
break;

case WEED_STATE WALKZ TRANSITION:
SetFrame (1) ;
weed state = WEED _STATE WALEZ;
weed state duration = 0.250;
break:

cass WEED STATE WALEZ:
weed_state = WEED STATE WALK3 TRANSITION;
weed state duration = 07
break;

case WEED_STATE WALK3 TRANSITION:
SetFrame(2) ;
weed state = WEED _STATE WALES;
weed_state_duration = 0.250;
break;

cass WEED STATE WALES:
weed_state = WEED STATE WALE4 TRANSITION:
weed state_duration = 07
break;

case WEED_STATE WALE4 TRANSITION:
SetFrame (3)
weed_state = WEED STATE WALE4:
weed state_duration = 0.250;
break;

cass WEED STATE WALE4:
weed_state = WEED 3TATE WALK] TRANSITION:
weed state_duration = 07

creak;

weed_state_time = 07

RerrslLCD

Bill of Materials

1602 LCD 16x2 Character Display w/ I12C Controller - $2.00 - 1 Req.
https://www.aliexpress.com/item/1PCS-LCD-module-Blue-screen-11C-12C-1602-for-arduino-1602-LCD-

UNO-r3-mega2560/32763867041.html

If you hook up this display and all you get are white blocks on the top row, you have likely configured

the wrong address in your code.

See RetroLCD.com for a helpful sketch that will tell you what address your display is listening on.

https://www.aliexpress.com/item/1PCS-LCD-module-Blue-screen-IIC-I2C-1602-for-arduino-1602-LCD-UNO-r3-mega2560/32763867041.html?spm=a2g0s.9042311.0.0.262f4c4d5Zwf8U
https://www.aliexpress.com/item/1PCS-LCD-module-Blue-screen-IIC-I2C-1602-for-arduino-1602-LCD-UNO-r3-mega2560/32763867041.html?spm=a2g0s.9042311.0.0.262f4c4d5Zwf8U

RerrslLCD

Arduino Nano Clone - $1.90 - 1 Req.
https://www.aliexpress.com/item/Freeshipping-Nano-3-0-controller-compatible-for-arduino-nano-
CH340-USB-driver-NO-CABLE/32341832857.html

¥ A& csp
'A

M—. ZTX RX PR “LD ._m

reovris [INTE) (P2 JE—® |08 % 1 4 %
OCZB) oo [INTL[PO3 B\~ ® 05~ = ost - 20 @—4H) 76 |
XCK Jlcavrze] To [PDA/EI—® o35 | @ 20 @ —E5/PC5) frcvris [ScL
0CoB|fpcmr21)| T1 [PD5 JEF-N\ @ | © 2 t 0| @&/ P ey [SDA]
| 6 | [oceA]rcmvr22)ATNG) PD6 K-\ @ | .3 20 | @&/ PC3] e 1743
/WINTZJ@-E—.‘ B < H/m
| 8 | ICP1)/rcvro |(CLKO) PBO |F-——@® | & 20 | @&/ PcT]/pcovrs
KN [ecovr1j[OCIA][PBIJEE\ @ | © 2 20| @—&J[Pca]/) 140,
(35 Jrcuir2][OCIB) [PBZ -\ @ | © 5 0 e—4]

[MOST)[rcovs |(OCZ(PBZ/EGN\ @ 03 T, 3

[MISO)/rcoves|[PBATETT—@® | © & 30 | @1/ pB5]| rcvrs | SCKIET

Note: This board is recognized as an Ardunio Duemilanove or Diecimila, ATmega 328P. If your IDE has
trouble uploading, it may be because you’ve selected the wrong board variant. The Duemilanove is the
version of the Arduino before the UNO. To test the board, simply plug it into your USB port and view
the serial monitor. It will spit out all the ASCII character codes.

https://www.aliexpress.com/item/Freeshipping-Nano-3-0-controller-compatible-for-arduino-nano-CH340-USB-driver-NO-CABLE/32341832857.html?spm=a2g0s.9042311.0.0.b5ef4c4dLOZbsg
https://www.aliexpress.com/item/Freeshipping-Nano-3-0-controller-compatible-for-arduino-nano-CH340-USB-driver-NO-CABLE/32341832857.html?spm=a2g0s.9042311.0.0.b5ef4c4dLOZbsg

RerrslLCD

74HX4051N DIP-16 Multiplexer - $2.04 / 10, $0.204 each - 1 Req.
https://www.aliexpress.com/item/10pcs-free-shipping-74HC4051N-74HC4051-SN74HC4051N-DIP-16-

Multiplexer-Switch-ICs-8-CHANNEL-ANALOG-MUX-DEMUX/32416713940.html

- - -
- « - -
.

» T O O - - -
= 5 5 » » 5 » 5 B, = = .
AT & % 5 & »
. A RAE0E & & & & a A »
B » - <, LA & A B 2 A2 2 »
R @ " S Nl R ¥ 2 A 5 A B "B " »
b 0 8 0 5 24 B A A 2 A A2
A B & & 6 & A B A B B . " 0 8N

. - K » p - L » -

https://www.aliexpress.com/item/10pcs-free-shipping-74HC4051N-74HC4051-SN74HC4051N-DIP-16-Multiplexer-Switch-ICs-8-CHANNEL-ANALOG-MUX-DEMUX/32416713940.html?spm=a2g0s.9042311.0.0.262f4c4d5Zwf8U
https://www.aliexpress.com/item/10pcs-free-shipping-74HC4051N-74HC4051-SN74HC4051N-DIP-16-Multiplexer-Switch-ICs-8-CHANNEL-ANALOG-MUX-DEMUX/32416713940.html?spm=a2g0s.9042311.0.0.262f4c4d5Zwf8U

RerrslLCD

Ceramic Capacitor - $1.40 / 300, $0.0047 each - 1 Req.

https://www.aliexpress.com/item/Ceramic-capacitor-2PF-0-1UF-30-valuesX10pcs-300pcs-Electronic-

Components-Package-ceramic-capacitor-Assorted-Kit-Free/32305092269.html

. N
300 Pieces
\/7

The rating really doesn’t matter. In fact, this part is probably optional.

https://www.aliexpress.com/item/Ceramic-capacitor-2PF-0-1UF-30-valuesX10pcs-300pcs-Electronic-Components-Package-ceramic-capacitor-Assorted-Kit-Free/32305092269.html?spm=a2g0s.9042311.0.0.27424c4dL6kfnx
https://www.aliexpress.com/item/Ceramic-capacitor-2PF-0-1UF-30-valuesX10pcs-300pcs-Electronic-Components-Package-ceramic-capacitor-Assorted-Kit-Free/32305092269.html?spm=a2g0s.9042311.0.0.27424c4dL6kfnx

RerrslLCD

Resistor - $2.48 / 600, $0.0041 each - 1 Req.
https://www.aliexpress.com/item/Free-Shipping-600-Pcs-1-4W-1-20-Kinds-Each-Value-Metal-Film-

Resistor-Assortment-Kit/32323198194.html

/v’-j'."\""
}! W{» il
S

This resistor is used to pull down the buttons when they’re not pressed so that you don’t get invalid
button pushes. This is also handled in code to ensure when a button is let go, the Multiplexer doesn’t

think it is still pressed. 2200hm is what | use but there is no strict requirement.

https://www.aliexpress.com/item/Free-Shipping-600-Pcs-1-4W-1-20-Kinds-Each-Value-Metal-Film-Resistor-Assortment-Kit/32323198194.html?spm=a2g0s.9042311.0.0.27424c4dL6kfnx
https://www.aliexpress.com/item/Free-Shipping-600-Pcs-1-4W-1-20-Kinds-Each-Value-Metal-Film-Resistor-Assortment-Kit/32323198194.html?spm=a2g0s.9042311.0.0.27424c4dL6kfnx

RerrslLCD

Tactile Push Button Switch 12x12x4.3mm - $1.79 / 50, $0.0358 each - 4 Req.
https://www.aliexpress.com/item/R242-03-12-12-4-3MM-touch-switch-micro-switch-vertical-feet-

4/32691509241.html

The PCB supports up to 8 buttons. 4 are required for Dinosaur.

https://www.aliexpress.com/item/R242-03-12-12-4-3MM-touch-switch-micro-switch-vertical-feet-4/32691509241.html?spm=a2g0s.9042311.0.0.27424c4dwRAnaY
https://www.aliexpress.com/item/R242-03-12-12-4-3MM-touch-switch-micro-switch-vertical-feet-4/32691509241.html?spm=a2g0s.9042311.0.0.27424c4dwRAnaY

RerrslLCD

Pin Header Connector Male 2.54mm Pitch Single Row 40 Pin - $1.85 / 30 x 40,

$0.0015 each - 16 Reg.
https://www.aliexpress.com/item/MclglcM-60PCS-1-x-40-Pin-2-54mm-Spacing-Single-Row-Breakable-

Male-Pin-Header-Connector/32809323787.html

https://www.aliexpress.com/item/McIgIcM-60PCS-1-x-40-Pin-2-54mm-Spacing-Single-Row-Breakable-Male-Pin-Header-Connector/32809323787.html
https://www.aliexpress.com/item/McIgIcM-60PCS-1-x-40-Pin-2-54mm-Spacing-Single-Row-Breakable-Male-Pin-Header-Connector/32809323787.html

RerrslLCD

Female - Female Jumper Wire 20cm 2.54mm 1p-1p - $0.78 / 40, $0.0195 each - 14
Req

https://www.aliexpress.com/item/Free-Shipping-80pcs-dupont-cable-jumper-wire-dupont-line-female-
to-female-dupont-line-20cm-1P/1728848121.html

https://www.aliexpress.com/item/Free-Shipping-80pcs-dupont-cable-jumper-wire-dupont-line-female-to-female-dupont-line-20cm-1P/1728848121.html
https://www.aliexpress.com/item/Free-Shipping-80pcs-dupont-cable-jumper-wire-dupont-line-female-to-female-dupont-line-20cm-1P/1728848121.html

BersolLCD

[2C / Power Hub - $2.00 / 10 - $0.20 each - 1 Req.

BersolLCD

Controller - $2.00 / 10 - $0.20 each - 1 Req.

RerrslLCD

Jumbo Wood Craft Sticks - $5.30 / 200 - $0.0265 each - 5 Req.
https://www.michaels.com/creatology-jumbo-wood-craft-sticks/10334892.html

e~

CREATOLOGY"

Jumbo Wood Craft Sticks

https://www.michaels.com/creatology-jumbo-wood-craft-sticks/10334892.html

BersolLCD

Summary
Part Price | Units Per | Required Total
Unit

1602 LCD 16x2 Character Display w/ 12C $2.00 1 | $2.0000 1 $2.0000

Controller

Arduino Nano Clone $1.90 1| $1.9000 1 $1.9000

74HX4051N DIP-16 Multiplexer $2.04 10 | $0.2040 1 $0.2040

Ceramic Capacitor $1.40 300 | $0.0047 1 $0.0047

Resistor $2.48 600 | $0.0041 1 $0.0041

Tactile Push Button Switch 12x12x4.3mm $1.79 50 | $0.0358 4 $0.1432

Pin Header Connector Male 2.54mm Pitch $1.85 1200 | $0.0015 16 $0.0240

Single Row 40 Pin

Female — Female Jumper Wire 20cm 2.54mm $0.78 40 | $0.0195 14 $0.2730

1p-1p

Jumbo Wood Craft Sticks $5.30 200 | $0.0265 5 $0.1325

12C / Power Hub $2.00 10 | $0.2000 1 $0.2000

Controller $2.00 10 | $0.2000 1 $0.2000
Total | $23.54 $5.0855

* Prices are accurate at a point in time and are subject to change — every effort is made to choose

generic parts that have little risk of going out of production

